User:Zeracles/Starmap/Minimal Spanning Tree: Difference between revisions

From Ultronomicon
Jump to navigation Jump to search
m Boruvka's Algorithm: remove redundant bits
updated method and code
Line 1: Line 1:
I originally coded up [[wikipedia:Prim's_algorithm|Jarnik/Prim's algorithm]]. In the process of optimising it, I unwittingly reinvented [[wikipedia:Bor%C5%AFvka%27s_algorithm|Boruvka's algorithm]], which handles large numbers of input points better, at least the way I've done it. Demonstration [http://www.star-control.com/forum/index.php/topic,1660.msg35209.html#msg35209 here].
I originally coded up [[wikipedia:Prim's_algorithm|Jarnik/Prim's algorithm]]. In the process of optimising it, I unwittingly reinvented [[wikipedia:Bor%C5%AFvka%27s_algorithm|Boruvka's algorithm]], which handles large numbers of input points better, at least the way I've done it. Demonstration [http://www.star-control.com/forum/index.php/topic,1660.msg35209.html#msg35209 here].
==Minimally Connected Opaque Friend Graph==
==Minimally Connected Opaque Friend Graph==
The code below for Boruvka's algorithm also contains an option to create a Minimally Connected Opaque Friend Graph (MCOFG). This is a graph I invented for the purpose of adding links to a completed MST to get closed loops, which were present in the original Star Control 1 starmaps. Actually, the MCOFG has another very interesting use in my real life work, but that's another story.
The matlab/octave code below for Boruvka's algorithm also contains an option to create a Minimally Connected Opaque Friend Graph (MCOFG). This is a graph I invented for the purpose of adding links to a completed MST to get closed loops, which were present in the original Star Control 1 starmaps. Actually, the MCOFG has another very interesting use in my real life work, but that's another story.


The basic properties of the graph are
The basic properties of the graph are
Line 19: Line 19:
<br>((r_2)/(2r_1))*((\pi/2)/(\theta))*(1/f)
<br>((r_2)/(2r_1))*((\pi/2)/(\theta))*(1/f)
<br>to vary the number of links. Higher values of f lead to more connections, more friends. The locality factor l influences the radius within which points are considered for friendship, which is by default the length of the longest local MST link. l = 2, say, would double this.
<br>to vary the number of links. Higher values of f lead to more connections, more friends. The locality factor l influences the radius within which points are considered for friendship, which is by default the length of the longest local MST link. l = 2, say, would double this.
==Boruvka's Algorithm==
Also downloadable [http://www.physics.usyd.edu.au/~asmith/files/sc1/MST_Boruvka.m here]
% minimal spannng tree in matlab
% Boruvka's algorithm (independently invented by yours truly)
% see http://www.star-control.com/forum/index.php/topic,1660
% by Anthony Smith (Zeracles)
% astroant@hotmail.com
% if only after an MST, leave separation=pruning=MCOFG=0
load('inputpositions')
localcount=8;
separation=0;
separationlength=0.03;
pruning=0;
prunesteps=1; % how many times to have a go at the tree
prunelevel=10; % length of branch to cut each time
MCOFG=0; % to create Minimally Connected Opaque Friend Graph (superset of MST)
friendliness=1; % default value is one
localityfactor=2; % default value is one
% detect input properties and set up index
sizeinputpositions=size(inputpositions);
lengthinputpositions=sizeinputpositions(1);
dimensions=sizeinputpositions(2);
index=linspace(1,lengthinputpositions,lengthinputpositions);
inputpositionxs=inputpositions(:,1);
inputpositionys=inputpositions(:,2);
if dimensions>2
inputpositionzs=inputpositions(:,3);
end
% initialise search parameters
minx=min(inputpositionxs);
maxx=max(inputpositionxs);
xextent=minx*maxx;
if xextent==0
xextent=eps;
end
miny=min(inputpositionys);
maxy=max(inputpositionys);
yextent=miny*maxy;
if yextent==0
yextent=eps;
end
if dimensions>2
minz=min(inputpositionzs);
maxz=max(inputpositionzs);
zextent=minz*maxz;
if zextent==0
zextent=eps;
end
end
if dimensions==2
measure=xextent*yextent;
localmeasure=measure/lengthinputpositions;
searchincrement=((localcount*localmeasure)/pi)^(1/2);
end
if dimensions==3
measure=xextent*yextent*zextent;
localmeasure=measure/lengthinputpositions;
searchincrement=((localcount*localmeasure)/(4/3)/pi)^(1/3);
end
treenumber=index;
numbertrees=length(treenumber);
branches=[];
searchfactor=1; % setting this to zero can lead to infinite loop if this is scaled multiplicatively
searchfactors=zeros(lengthinputpositions,1);
while numbertrees>1 % each input point is treated as a separate tree, and we join them together until we only have one tree
searchfactor=2*searchfactor; % calculate interpoint distances for ``close" points, with ``close" defined by this variable
while min(searchfactors)<searchfactor % searchfactors stores the searchfactors searched for each existing tree
tree=treenumber(min(find(searchfactors<(searchfactor)))); % choose a tree to search which has been searched with the smallest distance so far
treesearched=0;
while treesearched==0 % while we're not yet done looking around the nodes of this tree for links
maskvector=treenumber==tree;
treeindices=find(maskvector);
lengthtreepositions=sum(maskvector);
remainingpositionxs=inputpositionxs(find(maskvector==0));
remainingpositionys=inputpositionys(find(maskvector==0));
if dimensions>2
remainingpositionzs=inputpositionzs(find(maskvector==0));
end
remainingpositionindices=index(find(maskvector==0));
mindistances=[];
for i=linspace(1,lengthtreepositions,lengthtreepositions) % search around each of the tree positions for remainingpositions
% retrieve coordinates of a tree position
treepositionx=inputpositions(treeindices(i),1);
treepositiony=inputpositions(treeindices(i),2);
if dimensions>2
treepositionz=inputpositions(treeindices(i),3);
end
treeindex=treeindices(i);
% search for remainingpositions
boxradius=searchfactor*searchincrement;
boxminx=treepositionx-boxradius;
boxmaxx=treepositionx+boxradius;
boxminy=treepositiony-boxradius;
boxmaxy=treepositiony+boxradius;
if dimensions>2
boxminz=treepositionz-boxradius;
boxmaxz=treepositionz+boxradius;
end
if dimensions==2
closerremainingmask=(boxminx<=remainingpositionxs).*(remainingpositionxs<=boxmaxx).*(boxminy<=remainingpositionys).*(remainingpositionys<=boxmaxy);
end
if dimensions==3
closerremainingmask=(boxminx<=remainingpositionxs).*(remainingpositionxs<=boxmaxx).*(boxminy<=remainingpositionys).*(remainingpositionys<=boxmaxy).*(boxminz<=remainingpositionzs).*(remainingpositionzs<=boxmaxz);
end
mindistancecandidates=[];
mindistancecandidateindices=[];
if sum(closerremainingmask)>0 % if there are remainingpositions inside the box, calculate the actual distances to them
for k=transpose(find(closerremainingmask==1));
branchcandidatex=remainingpositionxs(k);
branchcandidatey=remainingpositionys(k);
if dimensions>2
branchcandidatez=remainingpositionzs(k);
end
branchcandidateindex=remainingpositionindices(k); % set up to remember the index of each prospective link destination
if dimensions==2
mindistancecandidate=((branchcandidatex-treepositionx).^2+(branchcandidatey-treepositiony).^2).^(1/2);
end
if dimensions==3
mindistancecandidate=((branchcandidatex-treepositionx).^2+(branchcandidatey-treepositiony).^2+(branchcandidatez-treepositionz).^2).^(1/2);
end
if mindistancecandidate<=boxradius
mindistancecandidates=[mindistancecandidates;mindistancecandidate];
mindistancecandidateindices=[mindistancecandidateindices;branchcandidateindex];
end
end
end
if numel(mindistancecandidates)>0 % minimum distance from this position on the tree
mindistance=[min(mindistancecandidates),treeindex,mindistancecandidateindices(find(mindistancecandidates==min(mindistancecandidates)))]; % minimum distances carry the indices of the prospective link destination
mindistances=[mindistances;mindistance];
end
end
if numel(mindistances)==0
searchfactors(maskvector)=searchfactor;
treesearched=1;
end
if numel(mindistances)>0
branchdistance=min(mindistances(:,1));
branchindex=find(branchdistance==mindistances(:,1));
numberbranchcandidates=numel(branchindex);
if numberbranchcandidates>1 % if there's a tie for minimum length
branchindex=branchindex(ceil(numberbranchcandidates*rand(1)));
end
% add this branch to the tree
branch=mindistances(branchindex,:);
branches=[branches;branch];
% join the two trees together
targettree=treenumber(branch(3)); % need to update the treenumber variable, which remembers which points belong to which trees
treenumber(find(treenumber==targettree))=tree;
numbertrees=numbertrees-1; % so that we are one step closer to finishing
end
end
end
end
% do custom stuff with this tree
% separation - remove all branches above a certain length
if separation==1
separationmask=(branches(:,1))<=separationlength;
branches=branches(find(separationmask),:);
end
% pruning - remove wandering branches
if pruning==1
degrees=[];
for i=linspace(1,lengthinputpositions,lengthinputpositions)
degree=(sum((branches(:,2))==i))+(sum((branches(:,3))==i));
degrees=[degrees;degree];
end
while prunesteps>0
protectednodes=index(find(degrees>2));
tempprunelevel=prunelevel;
while tempprunelevel>0
ends=index(find(degrees==1)); % find branch end nodes
for i=transpose(ends)
if sum(i==protectednodes)==0
if (degrees(i))>0
deletemask=((branches(:,2))==i)+((branches(:,3))==i);
cutbranch=branches(find(deletemask),:);
branches=branches(find(deletemask==0),:);
degrees(cutbranch(2))=(degrees(cutbranch(2)))-1;
degrees(cutbranch(3))=(degrees(cutbranch(3)))-1;
end
end
end
tempprunelevel=tempprunelevel-1;
end
prunesteps=prunesteps-1;
end
end
if MCOFG==1
sizebranches=size(branches);
lengthbranches=sizebranches(1);
branches=[branches,repmat(1,[lengthbranches 1])]; % designate existing links as MST links (type 1)
localmaxs=[];
for i=linspace(1,lengthinputpositions,lengthinputpositions)
MSTlengths=branches(:,1);
branchlist=((branches(:,2))==i)+((branches(:,3))==i);
localMSTlengths=MSTlengths(find(branchlist==1));
localmax=max(localMSTlengths); % get length of longest adjacent MST link
localmaxs=[localmaxs;localmax];
end
localmaxs=localityfactor*localmaxs;
for i=linspace(1,lengthinputpositions,lengthinputpositions)
localmax=localmaxs(i);
neighbours=[branches(:,2),branches(:,3)];
branchlist=((branches(:,2))==i)+((branches(:,3))==i);
neighbours=neighbours(find(branchlist==1),:);
neighbours=[neighbours(:,1);neighbours(:,2)];
localcentrex=inputpositionxs(i);
localcentrey=inputpositionys(i);
if dimensions>2
localcentrez=inputpositionzs(i);
end
% retrieve all points within radius localmax
boxminx=localcentrex-localmax;
boxmaxx=localcentrex+localmax;
boxminy=localcentrey-localmax;
boxmaxy=localcentrey+localmax;
if dimensions>2
boxminz=localcentrez-localmax;
boxmaxz=localcentrez+localmax;
end
if dimensions==2
closemask=(boxminx<=inputpositionxs).*(inputpositionxs<=boxmaxx).*(boxminy<=inputpositionys).*(inputpositionys<=boxmaxy);
end
if dimensions==3
closemask=(boxminx<=inputpositionxs).*(inputpositionxs<=boxmaxx).*(boxminy<=inputpositionys).*(inputpositionys<=boxmaxy).*(boxminz<=inputpositionzs).*(inputpositionzs<=boxmaxz);
end
closedistances=[];
localindices=[];
xcomponents=[];
ycomponents=[];
if dimensions>2
zcomponents=[];
end
for j=transpose(find(closemask==1))
otherpointx=inputpositionxs(j);
otherpointy=inputpositionys(j);
if dimensions>2
otherpointz=inputpositionzs(j);
end
xcomponent=otherpointx-localcentrex;
ycomponent=otherpointy-localcentrey;
if dimensions>2
zcomponent=otherpointz-localcentrez;
end
if dimensions==2
closedistance=((xcomponent).^2+(ycomponent).^2).^(1/2);
end
if dimensions==3
closedistance=((xcomponent).^2+(ycomponent).^2+(zcomponent).^2).^(1/2);
end
if closedistance<=localmax
closedistances=[closedistances;closedistance];
localindices=[localindices;j];
xcomponents=[xcomponents;xcomponent];
ycomponents=[ycomponents;ycomponent];
if dimensions>2
zcomponents=[zcomponents;zcomponent];
end
end
end
% remove local centre point from prospective linkees
notcentre=find(closedistances>(min(closedistances)));
closedistances=closedistances(notcentre);
localindices=localindices(notcentre);
xcomponents=xcomponents(notcentre);
ycomponents=ycomponents(notcentre);
if dimensions>2
zcomponents=zcomponents(notcentre);
end
sizeclosedistances=size(closedistances);
lengthclosedistances=sizeclosedistances(1);
for j=linspace(1,lengthclosedistances,lengthclosedistances)
closedistance=closedistances(j);
localindex=localindices(j);
xcomponent=xcomponents(j);
ycomponent=ycomponents(j);
if dimensions>2
zcomponent=zcomponents(j);
end
if sum(localindex==neighbours)==0 % if there's already a link to this other point, or it's the same as our local centre point, leave it alone
if sum(closedistances<closedistance)>0 % if there are actually points that are closer, apart from the local centre point
inclusionfactor=1; % ``inclusion" within a modified radius . . . sort of
for k=transpose(find(closedistances<closedistance));
if dimensions==2
dotproduct=(xcomponent*xcomponents(k))+(ycomponent*ycomponents(k));
end
if dimensions==3
dotproduct=(xcomponent*xcomponents(k))+(ycomponent*ycomponents(k))+(zcomponent*zcomponents(k));
end
angle=acos(dotproduct/(closedistance*closedistances(k)));
inclusionfactor=inclusionfactor*((closedistance/2)/(closedistances(k)))*((pi/2)/angle)/friendliness; % I think multiplying the inclusion factor is better than some additive scheme, since this way one point can block a connection even if there are many other points working against this effect; also, dividing by the friendliness at each step might be best to make this work the same way at all scales. That the presence of neighbours can ``create" connections on the opposite side of the centre point is also intuitively acceptable, in my view
end
if inclusionfactor<=1
branches=[branches;[closedistance,i,localindex,2]];
end
end
end
end
end
end
save('branches','branches')
% for plotting
sizebranches=size(branches);
numberofbranches=sizebranches(1);
figure
hold on
box on
if dimensions==2
plot(inputpositions(:,1),inputpositions(:,2),'k.')
end
if dimensions==3
plot3(inputpositions(:,1),inputpositions(:,2),inputpositions(:,3),'k.')
end
for i=linspace(1,numberofbranches,numberofbranches)
if dimensions==2
startindex=branches(i,2);
finishindex=branches(i,3);
startx=inputpositions(startindex,1);
starty=inputpositions(startindex,2);
finishx=inputpositions(finishindex,1);
finishy=inputpositions(finishindex,2);
line([startx;finishx],[starty;finishy],'Color','k')
end
if dimensions==3
startindex=branches(i,2);
finishindex=branches(i,3);
startx=inputpositions(startindex,1);
starty=inputpositions(startindex,2);
startz=inputpositions(startindex,3);
finishx=inputpositions(finishindex,1);
finishy=inputpositions(finishindex,2);
finishz=inputpositions(finishindex,3);
line([startx;finishx],[starty;finishy],[startz;finishz],'Color','k')
end
end


==Jarnik/Prim's Algorithm==
==Efficiency Method==
Also downloadable [http://www.physics.usyd.edu.au/~asmith/files/sc1/MST_JarnikPrim.m here]
In discussion on the forum Death 999 contributed a method that has become our preferred method for closed loop generation - I'll insert a description when I get a moment. It is implemented in both versions of the code available below.
% minimal spannng tree in matlab
 
% Jarnik/Prim's algorithm - runs pretty slowly for any more than 50 input points
==Code==
% see http://www.star-control.com/forum/index.php/topic,1660.msg33938.html#msg33938
When prototyping, I wrote a [http://www.physics.usyd.edu.au/~asmith/files/MSTclosure.m matlab/octave version available here], and have recently done a [http://www.physics.usyd.edu.au/~asmith/files/MSTclosure.c C conversion available here].
% by Anthony Smith (Zeracles)
% astroant@hotmail.com
load('inputpositions')
remainingpositions=inputpositions;
% detect input properties and set up index
sizeremainingpositions=size(remainingpositions);
lengthremainingpositions=sizeremainingpositions(1);
dimensions=sizeremainingpositions(2);
index=transpose(linspace(1,lengthremainingpositions,lengthremainingpositions));
remainingpositionxs=remainingpositions(:,1);
remainingpositionys=remainingpositions(:,2);
if dimensions>2
remainingpositionzs=remainingpositions(:,3);
end
% initialise search parameters
minx=min(remainingpositionxs);
maxx=max(remainingpositionxs);
xextent=minx*maxx;
miny=min(remainingpositionys);
maxy=max(remainingpositionys);
yextent=miny*maxy;
if dimensions>2
minz=min(remainingpositionzs);
maxz=max(remainingpositionzs);
zextent=minz*maxz;
end
if dimensions==2
measure=xextent*yextent;
localmeasure=measure/lengthremainingpositions;
searchincrement=((10*localmeasure)/pi)^(1/2);
end
if dimensions==3
measure=xextent*yextent*zextent;
localmeasure=measure/lengthremainingpositions;
searchincrement=((10*localmeasure)/(4/3)/pi)^(1/3);
end
% initialise with a seed point
seedindex=1;
maskvector=zeros(lengthremainingpositions,1);
maskvector(seedindex)=1;
remainingpositionxs=remainingpositionxs(find(maskvector==0));
remainingpositionys=remainingpositionys(find(maskvector==0));
if dimensions>2
remainingpositionzs=remainingpositionzs(find(maskvector==0));
end
remainingpositionindices=index(find(maskvector==0));
lengthremainingpositions=lengthremainingpositions-1;
treeindices=index(seedindex,:);
lengthtreepositions=1;
branches=[];
while lengthremainingpositions>0 % keep going until nothing remains unlinked to the tree (the ``remainingpositions")
mindistances=[];
for i=linspace(1,lengthtreepositions,lengthtreepositions) % search around each of the tree positions for remainingpositions
% retrieve coordinates of a tree position
treepositionx=inputpositions(treeindices(i),1);
treepositiony=inputpositions(treeindices(i),2);
if dimensions>2
treepositionz=inputpositions(treeindices(i),3);
end
treeindex=treeindices(i);
occupiedbox=0;
searchfactor=1;
while occupiedbox==0 % search for remainingpositions inside a box that grows until some are found
boxradius=searchfactor*searchincrement;
boxminx=treepositionx-boxradius;
boxmaxx=treepositionx+boxradius;
boxminy=treepositiony-boxradius;
boxmaxy=treepositiony+boxradius;
if dimensions>2
boxminz=treepositionz-boxradius;
boxmaxz=treepositionz+boxradius;
end
if dimensions==2
closerremainingmask=(boxminx<=remainingpositionxs).*(remainingpositionxs<=boxmaxx).*(boxminy<=remainingpositionys).*(remainingpositionys<=boxmaxy);
end
if dimensions==3
closerremainingmask=(boxminx<=remainingpositionxs).*(remainingpositionxs<=boxmaxx).*(boxminy<=remainingpositionys).*(remainingpositionys<=boxmaxy).*(boxminz<=remainingpositionzs).*(remainingpositionzs<=boxmaxz);
end
mindistancecandidates=[];
mindistancecandidateindices=[];
if sum(closerremainingmask)>0 % if there are remainingpositions inside the box, calculate the actual distances to them
for k=find(closerremainingmask==1)
branchcandidatex=remainingpositionxs(k);
branchcandidatey=remainingpositionys(k);
if dimensions>2
branchcandidatez=remainingpositionzs(k);
end
branchcandidateindex=remainingpositionindices(k); % set up to remember the index of each prospective link destination
if dimensions==2
mindistancecandidate=((branchcandidatex-treepositionx).^2+(branchcandidatey-treepositiony).^2).^(1/2);
end
if dimensions==3
mindistancecandidate=((branchcandidatex-treepositionx).^2+(branchcandidatey-treepositiony).^2+(branchcandidatez-treepositionz).^2).^(1/2);
end
if mindistancecandidate<=boxradius
mindistancecandidates=[mindistancecandidates;mindistancecandidate];
mindistancecandidateindices=[mindistancecandidateindices;branchcandidateindex];
end
end
end
if numel(mindistancecandidates)>0
mindistance=[min(mindistancecandidates),treeindex,mindistancecandidateindices(find(mindistancecandidates==min(mindistancecandidates)))]; % minimum distances carry the indices of the prospective link destination
mindistances=[mindistances;mindistance];
occupiedbox=1;
end
searchfactor=searchfactor+1; % make the search box bigger
end
end
branchdistance=min(mindistances(:,1));
branchindex=find(branchdistance==mindistances(:,1));
numberbranchcandidates=numel(branchindex);
if numberbranchcandidates>1 % if there's a tie for minimum length
branchindex=branchindex(ceil(numberbranchcandidates*rand(1)));
end
% add this branch to the tree
branch=mindistances(branchindex,:);
branches=[branches;branch];
% add that location to the tree
treeindices=[treeindices;branch(3)];
lengthtreepositions=lengthtreepositions+1;
% remove that location from the remainingpositions
remainingmask=ones(lengthremainingpositions,1);
removed=find(remainingpositionindices==branch(3));
remainingmask(removed)=0;
remainingpositionindices=remainingpositionindices(find(remainingmask));
remainingpositionxs=remainingpositionxs(find(remainingmask));
remainingpositionys=remainingpositionys(find(remainingmask));
if dimensions>2
remainingpositionzs=remainingpositionzs(find(remainingmask));
end
lengthremainingpositions=lengthremainingpositions-1;
end
save('branches','branches')
% for plotting
sizebranches=size(branches);
numberofbranches=sizebranches(1);
figure
hold on
box on
plot(inputpositions(:,1),inputpositions(:,2),'k.')
for i=linspace(1,numberofbranches,numberofbranches)
startindex=branches(i,2);
finishindex=branches(i,3);
startx=inputpositions(startindex,1);
starty=inputpositions(startindex,2);
finishx=inputpositions(finishindex,1);
finishy=inputpositions(finishindex,2);
line([startx;finishx],[starty;finishy],'Color','k')
end

Revision as of 04:38, 27 August 2013

I originally coded up Jarnik/Prim's algorithm. In the process of optimising it, I unwittingly reinvented Boruvka's algorithm, which handles large numbers of input points better, at least the way I've done it. Demonstration here.

Minimally Connected Opaque Friend Graph

The matlab/octave code below for Boruvka's algorithm also contains an option to create a Minimally Connected Opaque Friend Graph (MCOFG). This is a graph I invented for the purpose of adding links to a completed MST to get closed loops, which were present in the original Star Control 1 starmaps. Actually, the MCOFG has another very interesting use in my real life work, but that's another story.

The basic properties of the graph are

  • all the points are connected
  • each point is directly linked to ``nearby" points
  • no individual link occupies a path in space similar to that traced by other link(s)

It is ``minimal" because only close neighbours are connected, and with ``opaque friends" because links can't go ``through" nearby points (the ``friends"). Graph geeks will realise that the Delaunay Tessellation (which we also considered) seems to satisfy these criteria, but it has edge effects; it will produce a convex hull at the edges, linking points that may be nowhere near each other, meaning that it only partially satisfies the ``nearby" criterion. The MCOFG is also far easier to implement than the delaunay tessellation! The MST is a good starting point in the construction of this graph, because it guarantees the connection of all points. It is also used to define ``nearby" and thus ``friends", by using the length of the longest MST link hosted at any given node to define a radius within which links to additional points will be considered.

So, to generate the graph, we first generate an MST. For each point, we examine its MST links, and remember the length of the longest one. Points within this distance around the point are considered local, and potential friends. To determine whether each of these potential friends should be linked to the point, we consider all points that are closer. If r_2 is the distance to the point we are considering linking, and r_1 is a point closer to the point we are finding friends for, and \theta is the angle between vectors r_2 and r_1, we compute the product
((r_2)/(2r_1))*((\pi/2)/(\theta))
If it's less than one, the link r_2 is allowed. When there are many points closer to consider, the products for each of them are multiplied together, and if the result if less than one, the link is allowed. This approach is motivated by the third condition for this graph, that no individual link occupies a path in space similar to that traced by other link(s). If one has points 1, 2, and 3, in that order on a straight line, 1 should not be linked to 3, because this duplicates the paths 1 to 2 and 2 to 3. With our approach, 1 will not be linked to 3 because 2 is closer to one, and the angle \theta is zero, so the product will be very much greater then one.

The motivation for the inclusion of the distance component (r_2/r_1) is that if two points subtend a small angle \theta, but are at similar distances, the link to the more distant one shouldn't be broken. As for normalisation, the factors of two in the angular and distance components are there so that we can actually get values of less than one.

There are also two numbers that can be tweaked to vary the connectedness of the graph. The product is divided by ``friendliness" f, i.e.
((r_2)/(2r_1))*((\pi/2)/(\theta))*(1/f)
to vary the number of links. Higher values of f lead to more connections, more friends. The locality factor l influences the radius within which points are considered for friendship, which is by default the length of the longest local MST link. l = 2, say, would double this.

Efficiency Method

In discussion on the forum Death 999 contributed a method that has become our preferred method for closed loop generation - I'll insert a description when I get a moment. It is implemented in both versions of the code available below.

Code

When prototyping, I wrote a matlab/octave version available here, and have recently done a C conversion available here.